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INTRODUCTION 

Many geologists have careers in the environmental field.  The Bureau of Labor Statistics predicts a 15% growth 
rate for careers in the environmental industry over the next decade, therefore there will not be a shortage of job 
opportunities for those looking to apply their background in geology to improve the natural environment for 
human use and consumption.  The environmental sector is a diverse field, both in terms of the professionals 
who work in it and what they do.  Professionals with backgrounds in geology, chemistry, biology, physics, or 
engineering will work to prevent, control, and remediate environmental problems that relate to surface water, 
groundwater, soil, air, and waste materials.  Depending on the position, a professional may be responsible for 
quality testing, assessment, remediation, treatment, and/or management of these natural resources and human 
related waste materials.  Most entry level positions will require field and/or laboratory work including collection 
and sample management and handling, sample testing for any number of analytical parameters, and then data 
analysis and assessment. This knowledge and skill set goes beyond basic chemistry classes and typically can be 
gained in an aqueous geochemistry course or water quality course. 

The objective of this short course is to provide participants with either an initial exposure to or a refresher of 
basic water and wastewater quality tests that are commonly used in the environmental industry.  This is a hands-
on short course that will be run in the new Environmental Technology laboratory at SUNY Canton.  Participants 
will be instructed on how to properly test for common water and wastewater quality parameters such as pH, 
temperature, conductivity, turbidity, dissolved oxygen, alkalinity, hardness, inorganics, and biochemical oxygen 
demand (BOD).  The test procedures and equipment are those commonly used in environmental field sampling, 
drinking water treatment plants, and wastewater treatment plants.  Using surface/ground water samples 
collected from around the region participants will learn how to calibrate and use the equipment, execute the 
analytical test procedures, and interpret the results.  Participants will also learn about proper sample collection, 
handling, and preservation techniques.  A variety of equipment/approaches will be used in the analytical tests: 
probes, meters, titrations, and color spectrophotometers.  All methods and procedures are after industry standard 
and practice found in the ASTM Book of Standards, Volume 11 for Water and Environmental Technology 
(ASTM International) and Standard Methods for the Examination of Water and Wastewater (APHA, AWWA, 
and WEF); and in accordance with equipment specific standard operating procedures. 

BASIC LAB SAFETY  

Safety is of utmost importance and is not something to be taken lightly.  Some of the equipment and materials 
that are used in water and wastewater testing can be potentially very harmful.  It is therefore important to know 
how to properly use and handle these materials and equipment in the field/laboratory setting.  Creating and 
maintaining a safe and healthy environment is a shared responsibility of everyone.  This is something that must 
be taken seriously by all participants.  Industry requires training and certifications to address such issues (e.g. 
OSHA 10hr safety training, OSHA 40 Hour HAZWOPER). The following subsections review key laboratory 
safety procedures that participants will follow in today’s short course.  It is not intended to be a fully 
comprehensive laboratory safety training course. 
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Protective Equipment 

• Lab Coat:  

Lab coats will be required.  They act as a barrier to protect skin and clothing from potentially harmful 
chemicals, dyes, or other substances encountered in the lab.  Be aware of sleeves as they can knock 
equipment over.  Lab coats must be removed if leaving the lab room, so as to not contaminate areas 
outside of the work space.  

• Safety Glasses or Goggles:  

Eye protection is required when working in the lab.  Prescription eyeglasses may be worn instead of 
safety glasses, provided that they adequately shield the eyes.  Some safety glasses will fit over 
prescription eyeglasses.  This is recommended if adequate protection cannot be offered from regular 
glasses alone.  It is strongly encouraged that contact lenses not be worn in the lab.  If something is 
splashed into the eye, it is more difficult to rinse the eye properly with a lens in the way.  Trying to 
remove the lens could cause a delay in rinsing the eye and result in serious damage.  Some chemicals 
will adhere a contact lens directly to the eyeball making it next to impossible to remove. 

• Protective Gloves:  

Gloves should be worn when working with chemicals and potentially infectious materials.  Gloves 
should be replaced if they develop a tear or perforation.  When gloves are removed, take them off 
while turning them inside out and do not touch the exterior of the glove.  Properly dispose of the used 
gloves in a trash can, do not set them down on a counter, table, or workbooks as this may contaminate 
the surface.  If you must leave the lab area, gloves must be removed so as to not contaminate areas 
outside of the work space. 

• Clothing:  

Proper clothing should be worn at all times.  Loose fitting clothing, especially loose shirt sleeves, 
should be avoided.  Long sleeve shirts and pants will provide more protection for your skin than T-
shirts and shorts.      

• Footwear:  

Proper footwear should be worn at all times.  In particular, no sandals, flip-flops, slippers, ect.  should 
be worn, since they provide no protection should equipment/chemicals be dropped on them.   

 

Chemicals 

• Labeling and Safety Information:   

All chemicals and solutions should be properly labeled so it is clear what they contain.  The phone 
number and web address to obtain the Material Safety Data Sheets (MSDs) are posted in the work area.   

• Handling and Transport:  
Chemical/solution containers should be kept well away from the edge of the workbench and any 
equipment that generates a flame or excessive heat.  When working with chemicals on the workspace 
the containers should be covered and sealed whenever not in use to prevent spillage.  It should not be 
necessary to transport any chemicals during the short course.  However, if chemicals must be moved it 
should be done carefully, in a fashion that minimizes the chance of a spill or leak.  No chemicals 
should be moved without the permission and supervision of the overseeing faculty member or 
laboratory assistant.  Other participants should be made aware that a chemical is “on the move”.  While 
being moved the container should be properly sealed, should possibly be contained in a secondary 
containment vessel, and the person moving the chemical should be wearing all necessary protective 
covering.   

• Disposal:   
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Not all wastes (chemicals, solutions, containers, disposable equipment, ect) can be disposed of in a 
normal trash can or down the sink – special secondary containment or pre-disposal treatment may be 
required.  Do not dispose of any wastes down the sink or in the trashcan until you have consulted with 
the short course instructor. 

 

Equipment 

• Handling of equipment:  

Treat all equipment with care and respect.  Most of this equipment is expensive and to varying degrees 
– fragile.  Use equipment only for what it is intended for, do not move equipment unless you are told to 
do so, and follow the instructors use and handling of the equipment. 

• Cleaning:  

Keep a clean workspace.  Each group and individual is responsible for cleaning the equipment and 
workstation space as instructed.  Glassware typically requires a multi-step cleaning – soap wash, 3x tap 
water rinse, and 3x distilled water rinse.  Be careful when handling wet glassware as it becomes very 
slippery and can easily be dropped into the sink.  Should glassware break the instructor will clean and 
dispose of the broken pieces. 

 

Emergency Response 

At the start of the short course the instructor will point out the location of the following: 

• Fire extinguishers 

• Eye wash fountains 

• Emergency showers 

• First aid supplies 

• MSDS sheet contact information 

• Laboratory exits 

 

Miscellaneous Rules 

• Follow the instructions provided to you by the instructor at all times.  If you are unsure of part of the 
procedure do not hesitate to ask for assistance. 

• Food and Drink: Absolutely NO food or drink is allowed in the laboratory area.  All food and drink 
should be consumed prior to coming to the laboratory session.  Water is available down the hall at 
water fountains. 

• Jewelry: Rings, watches, and bracelets may catch on equipment.  Some articles will react negatively 
with protective gloves and certain chemicals, causing discoloration or staining.  In the event that there 
is a chemical spill, the material may become trapped under the jewelry, making it difficult to remove 
the chemical and prevent injury.  Use precaution when wearing these items in the laboratory.   

• Hair: Long hair should be kept tied back, especially when working with open flame or when leaning 
over the bench to work as it may knock equipment or get into chemicals.  

• Hand Washing: Hands should be washed and dried thoroughly with soap prior to the start and at the 
end of the lab.  Antibacterial soap can be found at each of the work stations. 
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BASIC WATER QUALITY PARAMETERS 

 

Introduction and Background: 

Environmental assessment typically will include measurement of basic water quality parameters such as pH, 
temperature, conductivity, dissolved oxygen, and turbidity.  These parameters are important as they drive most 
physical, chemical, and/or biological reactions that impact water and wastewater quality and are important 
factors in treatment/remedial systems.   In this section of the short course, participants will learn about the 
probes and meters used to measure these parameters, how to handle and calibrate the equipment, and how to use 
the instrumentation to obtain analytical values for pH, temperature, conductivity, dissolved oxygen, and 
turbidity.  Participants will be divided into four (4) groups and each group will be assigned a different source of 
water.  Analytical results from each group will be shared with all participants to allow for comparison and 
discussion of the results.  The same work groups and water sample will be used for the other three short course 
modules as well.  

In water, hydrogen ions, H+, are directly or indirectly involved in numerous chemical reactions; and are often 
driving factors in these reactions.  The concentration of hydrogen ions is measured as pH, or acidity, where pH 
is the negative log concentration of hydrogen ions: 

 pH = -log [H+] 

A solution that is acidic will have a low pH (thus a high concentration of hydrogen ions) and a solution that is 
basic will have a high pH (a low concentration of hydrogen ions).  In order to measure pH a meter and probe are 
used.  The pH scale ranges from values of 0 to 14, with a value of 7 being neutral, pH values less than 7 are 
considered acidic, and pH values greater than 7 are considered basic.  As reference, vinegar has a pH of 2.5, 
milk has a pH of 6.7, and Pepto Bismol has a pH of about 10.  The pH of natural waters (surface and 
groundwater) can be quite variable depending on overall water quality, bedrock/soil types, seasonal variation, 
the types of chemical reactions that are occurring, etc.  Commonly pH levels of streams in the North Country 
(e.g. the Grasse River and Raquette River) are close to neutral (6.8-7.2).  Municipal drinking water treatment 
plants have a target pH of about 7.0 in their effluent stream.  In water and wastewater treatment systems, some 
chemical and/or biological reactions require a particular pH in order to proceed or be most efficient (time it 
takes for a particular treatment process and/or degree to which a reaction will occur).  For example, the alum 
coagulation/flocculation process in a conventional drinking water treatment plant requires a pH of 6.  In passive 
treatment systems for iron acid mine drainage a high pH (8-10) is required to optimize iron oxidation.     

Temperature is a factor in both natural and engineered systems as it is one factor that impacts the rate in which 
many reactions proceed.  Both chemical and biological reaction rates typically increase as temperature 
increases.  Water samples are collected and put on ice in the field and stored in a cold refrigerator (< 4°C) in 
order to slow both chemical and biological reactions.  A temperature probe is typically part of the pH meter and 
probe.   

Conductivity measures the solutions ability to conduct an electronic charge.  It is a reflection of the number of 
ions present in the sample.  These ions are charged particles and the electron activity that they produce is a 
reflection of the ions concentration.  The greater the number of ions present in the sample, the greater the 
conductivity.  A probe is used to measure conductivity.   

Oxygen is found in water and is referred to as dissolved oxygen (DO).  It is typically consumed in many 
chemical and biological reactions and is an important factor in 1) assessing the water quality for ecological 
systems, 2) system components of wastewater treatment systems, and 3) assessing water quality of treated 
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wastewater streams (as participants will learn in the biochemical oxygen demand module of this short course).   
Dissolved oxygen is measured with a DO meter and probe.  A healthy, natural stream would typically have DO 
concentrations of 7-9 mg/L. 

Turbidity is the measure of clarity of water and is used in treatment design tests (e.g. jar test to determine 
chemical coagulant dose in drinking water treatment) and for monitoring effectiveness of treatment systems.  
Turbidity is measured with an instrument called a turbidimeter, which measures the amount of light that is able 
to pass through a sample.  The more material that is present in a sample (e.g. solids, metals, bacteria, organics), 
the less light is able to pass through the sample, and the higher the turbidity of the sample.  Turbidity is reported 
in units of NTU or nephelometric turbidity units.  Finished treated drinking water should have a turbidity of 0.1 
to 1.0 NTU according to the US Environmental Protection Agency (EPA). 

 

Objectives: 

• Overview of Field Work: review sample collection, preservation, and handling techniques 
• Analytical tests:  learn how to operate meters and probes used to measure pH, temperature, 

conductivity, DO, and turbidity, conduct analytical tests for these basic water quality parameters (pH: 
ASTM D1293-99R05, APHA 4500-H+; temperature: ASTM D6764, APHA 2550; conductivity 
ASTM D1125-95RR99, APHA 2510; dissolved oxygen ASTM D0888-03, APHA 4500-O; turbidity 
ASTM D1889-00, APHA 2130), and discuss results from varying water sources  

Overview of Field Work: 

In the environmental engineering profession, quality control is of the utmost importance.  Reducing error and 
producing repeatable data sets is essential to proper analysis and evaluation.  It is therefore necessary to learn 
the appropriate method in which to collect a water sample so that you can be assured that your data represents 
the conditions of the water/wastewater source as accurately as possible.  The main goal is to collect a number of 
samples that are a good representation of the water/wastewater source.  To ensure that a representative sample is 
obtained, one must minimize the sampling bias that could arise during collection by having a routine that deals 
with sample site selection, sample handling, sample preservation, the frequency of collection, and the 
equipment and method(s) used to collect the sample.  Prior to sampling it needs to be determined what 
parameters are going to be tested.  It should then be determined by what method they will be analyzed.  The 
standard procedure for that method should be carefully reviewed.  In the standard procedures for that method it 
should indicate how the sample should be collected: type of sample container, sample volume, sample 
preservation, and allowable sampling holding time and conditions.  Any or all of these may vary depending on 
the source type (e.g. stream, lake, groundwater well, tap/pipe).  All of this should be carefully reviewed to 
ensure that all of the proper equipment has been acquired and all procedural steps are accurately followed. 

As an introduction to measurement of basic water quality parameters, the instructor will give a brief overview 
of the topics outlined below that relate to field work: 

• Typical field kit: cooler, ice, clip board, chain of custody forms, sample labels, field book, sample 
bottles, filtration equipment, preservation materials, samplers (sample bottle, sample cup on arm, 
bailer, peristaltic pump+tubing), field meters and probes (e.g. pH probe, DO probe, turbidimeter), 
calibration standards and reagents, distilled/deionized water, gloves, safety glasses, markers, hip boots, 
water level tape, measuring tape, camera, site map. 

• Sample collection: containers and collection method 
• Sample preservation: filtration, chemicals, cooling agent 
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• Sample handling: coolers, chain of custody, arrival in lab, holding times (Exhibit 1 – Example Chain 
of Custody form) 

Materials for Analytical Tests: 

The following materials will be used to determine pH, temperature, conductivity, DO, and turbidity of the water 
sample.   

• pH/temperature probe 
• Mulitparameter field probe (can test for pH, temperature, conductivity, total dissolved solids, and 

salinity) 
• pH standard solutions  
• Conductivity standard solutions 
• DO probe 
• DO calibration sleeve 
• HACH turbidimeter 
• HACH turbidity calibration standards and verification sample 
• Bottle of distilled water 
• 250 mL beakers 
• Kim wipes 
• Protective gloves 
• Water samples 

 

Procedures for Analytical Tests 

The following procedures will be used to determine pH, temperature, conductivity, DO, and turbidity of the 
water sample.  Record the results in the data table found in Exhibit 2.  These results will be shared with the 
group for discussion of variation in water quality between the different sources. 

• Measuring pH, Temperature, and Conductivity 

1. Turn on the pH/temperature/conductivity multimeter probe. 
2. Temperature does not require any calibration. 
3. To calibrate the probe for pH make sure it is reading pH by pressing the “Mode/Ent” button 
4. Rinse the probe with distilled water into a rinse beaker. 
5. Obtain the container with 7.00 standard solution and pour a small amount into the probe cap. 
6. Place the probe into the 7.00 standard solution. 
7. Hit “Cal”. 
8. Wait until the reading is stable and then hit “Mode/Ent”. 
9. Remove the probe from the 7.00 standard solution. 
10. Rinse the probe with distilled water into the rinse beaker. 
11. Dump the calibration standard from the cap into the rinse beaker and repeatedly rinse the cap 

with distilled water. 
12. Repeat steps 3-9 with the 4.01 and 10.00 pH standard solutions. 
13. To calibrate for conductivity press “Mode/Ent” until the probe is in the conductivity mode. 
14. Rinse the probe with distilled water into a rinse beaker. 
15. Obtain the container with 84 µS standard solution and pour a small amount into the probe cap. 
16. Place the probe into the 84 µS standard solution. 
17. Hit “Cal”. 
18. Wait until the reading is stable and then hit “Mode/Ent”. 
19. Remove the probe from the 84 µS standard solution. 
20. Rinse the probe with distilled water into the rinse beaker. 
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21. Dump the calibration standard from the cap into the rinse beaker and repeatedly rinse the cap 
with distilled water. 

22. Repeat steps 15-21 with the 1413 µS and 12.88 mS conductivity standard solutions. 
23. The probe is now calibrated. 
24. Pour approximately 100mL of water sample into an empty 250mL glass beaker. 
25. Rinse with probe with distilled water into the rinse container. 
26. Place the probe into sample, holding it off the bottom of the beaker and away from the sides 

of the container. 
27. Gently stir the sample with the probe. 
28. Monitor the parameters on the screen of the probe, allowing them to equilibrate before taking 

a reading. Record your results in the table found in Exhibit 2.  Pressing the “Mode” button 
will cycle the meter through the different parameters. 

29. Remove the probe from the water, rinse with deionized water into the rinse container, gently 
dry the exterior of the probe with a Kim wipe, replace the end-cap, and turn off the probe.   

 

• Measuring DO 
 

1. Prior to the start of the lab, the DO meter was turned on to allow the probe to polarize.  If the 
meter has automatically shut itself off turn it on. 

2. The water-saturated air method is used to calibrate the meter and probe. 
3. Take the white calibration sleeve, remove the cap from the one, and take out the gray sponge. 
4. Saturate the sponge with distilled water, squeeze out the excess water, replace the sponge into 

the end of the calibration sleeve, and replace the cap. 
5. Make sure there are not water drops at the end of the DO probe – if any are present, gently 

blot dry with a Kim wipe. 
6. Insert the DO probe into the calibration sleeve. 
7. Select calibrate (“Cal”) on the DO meter.  The meter will cycle through a few readings, 

should obtain a reading close to 102.3%, and then go back into measurement mode, reading 
DO at mg/L or %.  Press the “Mode” button until the meter reads DO in units of mg/L. 

8. To measure DO of the sample, remove the DO probe from the calibration sleeve and suspend 
it in the beaker that contains the water sample.  Holding the beaker in one hand and the probe 
in the other, gently stir the sample with the probe to get the water sample flowing past the 
membrane at the end of the probe. Press “Measure” and continue to slowly stir the sample 
until the DO reading stabilizes. Record the result in the data table found in Exhibit 2. 
 

• Measuring Turbidity 

1. Turn on the turbidimeter with the On/Off button that looks like a circle with a vertical line 
through the top.   

2. Push the calibration key, which looks like a two point scatter plot with a best fit line. 
3. Follow the instructions on the display.  Three standard solutions will be used to calibrate the 

meter.  The first calibration standard has a turbidity of 20 NTU, the second of 100 NTU, and 
the third of 800 NTU.  For each calibration standard, carefully remove it from its storage 
place, hold it at the top being sure not to touch the sides of the vials.  Carefully wipe the sides 
with a Kim wipe to remove any marks.  Gently invert each standard several times to stir up 
the “sediment” that is creating the turbidity for the sample.  Do not shake as it may introduce 
air bubbles that will cause error in the calibration.  Insert the vials into the holding cell with 
the arrow head facing to the front, close the lid, and press “Read”.  The display will show the 
meter stabilizing, will present the result, and will then ask for the next standard.  Repeat these 
steps for each calibration standard. 

4. After the 3rd calibration standard has stabilized, press “Done” and then “Store” to save the 
results. 
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5. The meter will then require a verification sample to be read.  Gently wipe and invert the 
verification sample cell, place it into the meter’s hold cell, close the lid, and press “Read”.  If 
the verification sample reads correctly the meter is calibrated and it will automatically re-enter 
the measurement mode. 

6. Once the machine is calibrated test the water sample provided to the group.   
7. Obtain the water sample.  Gently invert the sample container to mix, but not vigorously as 

you don’t want to add air bubbles as this may impact the results. 
8. Rinse the turbidity sample cell two or three times with a small portion of sample.   
9. Pour the sample into the sample cell up to the fill line and put on the cap. 
10. Using a KimWipe, wipe the entire cell free of fingerprints, water drops, or other marks.  

Holding the call up to a source of light is useful for this.  
11. Gently invert the cell a couple of times to mix the contents.  Again, do not shake as tiny air 

bubbles can alter readings. 
12. Place the sample cell into the turbidimeter with the arrow head facing front, close the lid, and 

press “READ”.   
13. Records the turbidity value (units are NTU) in the provided data table found in Exhibit 2. 

 

ALKALINITY AND HARDNESS TITRATIONS 

 

Introduction and Background 

Alkalinity is defined as the ability of water to neutralize acids.  This is commonly referred to as buffering 
capacity and works to prevent a drop in pH.  Alkalinity is the sum of all bases found in water that are titratable 
with a strong acid.  It is essentially the opposite of acidity, which can be defined as the presence of a weak acid 
preventing a rise in pH upon the addition of a strong base.  Typically, alkalinity in surface waters is derived 
from carbonates, bicarbonates, and hydroxides.  These carbon sources may or may not be naturally occurring.  
If they are naturally occurring, it is usually due to the presence of a certain rock type (e.g. limestone, dolomite, 
ect.).  When one makes the assumption that only the inorganic carbon is significantly impacting alkalinity, it 
can be defined as follows in equivalents/liter (eq/L): 

Alkalinity = [HCO3
-]+[CO3

2-]+[OH-] 

Anions such as borates (e.g. B4O5(OH)4
2-), phosphates (e.g. PO4

3-, HPO4
2-, H2PO4-) and silicates (e.g. SiO(OH)3

-

) may also affect the alkalinity of water.  If concentrations of these ions are significant, they must be included in 
the above equation.  Water bodies with high alkalinity (acid neutralizing capacity) are capable of maintaining a 
pH near neutral pH during environmental events such as acid rain, spring runoff, and acidic or caustic chemical 
spills.  Water with low alkalinity tends to be corrosive, which can bad for pipes in distribution systems or 
structures made of reinforced concrete or steel. 

While alkalinity could be determined by measuring the ions that are contributing to it, the most common 
method to determine alkalinity is a titration called the Gran Method.  According to the Gran Method, alkalinity 
can be calculated using the following equation: 

Alkalinity = 5000*(Ve * Nt) / Vs = # mg/L as CaCO3 

Where Ve = volume of titrant at the equivalence point (L), Nt = normality of titrant in equivalents per liter 
(eq/L), Vs = sample volume (L), and the 5000 converts from eq of CaCO3 to mg of CaCO3.  The normality of 
the titrant and the volume of sample are predetermined, so the only value that needs to determined is the volume 
of titrant at the equivalence point.   
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The equivalence point is the point in the titration where an equivalent or stoichiometric amount of titrant has 
been added to the sample water to complete the acid-base reactions that are occurring, thus depleting the sample 
of all of the alkalinity.  There are several ways to determine the volume of titrant at the equivalence point. The 
simplest method to determine Ve, is to add an indicator dye to the water sample.  An indicator dye, such as 
Bromphenol blue indicator solution, will be added to the water sample at the beginning of the titration.  As the 
titration proceeds, the equivalence point will be reached when there is a persistent color change.  The volume of 
titrant used at the point of this color change is the Ve needed to calculate alkalinity.  See Table 1 below for an 
example of a data set recorded from an alkalinity test. 

Table 1. Example data set from an alkalinity test. 

Example Alkalinity Test Data 
Vs (L) = 0.2 
Nt (eq/L) = 0.1 

Volume of Acid 
Added (mL) pH 

Gran Function 
(F1) 

0.5 7.33 9.37809E-09 
1.0 7.19 1.29777E-08 
1.5 7.00 2.015E-08 
2.0 6.91 2.48514E-08 
2.5 6.69 4.13452E-08 
3.0 6.52 6.1305E-08 
3.5 6.41 7.91707E-08 
4.0 6.15 1.44421E-07 
4.5 5.76 3.5538E-07 

*Color Change*       5.0 3.98 2.14661E-05 
5.1 3.81 3.17662E-05 
5.2 3.72 3.91001E-05 
5.3 3.57 5.52572E-05 
5.4 3.49 6.64661E-05 
5.5 3.44 7.46125E-05 
5.6 3.38 8.57083E-05 
5.7 3.32 9.84542E-05 
5.8 3.26 0.000113096 
5.9 3.23 0.000121243 

 

The second way to determine the volume of titrant at the equivalence point is to add incremental volumes of 
titrant, recording the pH change with each addition, and create a titration curve from this data set (cumulative 
volume of acid added vs pH).  If a strong acid is added to a sample with alkalinity and the sample is not 
complex (i.e. having many species contributing to the alkalinity), a graph similar to Figure 1 can be generated.  
As more and more acid is added, the alkalinity buffers the water sample from initially dropping quickly in pH.  
However, around the equivalence point there is a rapid change in pH where the moles of weak base converted 
equals the moles of strong acid added and all of the alkalinity is exhausted.  The point where there is a change 
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in curvature from convex to concave, or visa versa, is termed the equivalence point.  The volume of titrant used 
to reach this point is the Ve needed in the alkalinity equation. 

 

Figure 1: Example alkalinity titration curve.  

There are a number of reasons why developing a titration curve can become difficult.  One difficulty lies with 
the type of acid and based found in the water being titrated.  When dealing with monoprotic acids and bases 
(accepts one H+), the titration curve will look like the one drawn in Figure 1.  However, if the acid or base 
accepts more than one hydrogen ion, the curve will become more complex, with multiple equivalence points, 
creating “steps” in the titration curve.  In complex water samples where there are multiple influences on the 
alkalinity, or if the system is buffered, the equivalence point can become difficult to find or non-existent.  In 
addition, if the alkalinity is very low, it may be difficult to locate the equivalence point on the titration curve.  
There are multiple ways in which these difficulties can be overcome to determine the volume of titratant used to 
reach the equivalence point in order to solve for alkalinity.  One method requires calculating what is referred to 
as the first Gran function (F1).  This function is calculated with the following equation:  

F1 = (Vs + Vt) * 10(-pH) 

The first Gran function is determined for each volume of added titrant.  Then a plot of F1 vs volume of added 
titrant is created.  Figure 2 below is an example of a Gran plot.  Note how there is a significant change in slope 
just as the data approaches a F1 value of zero.  The linear regression line is only plotted through the points on 
the portion of the data that has a high slope.  The linear regression line will intercept the x-axis at the volume of 
titrant used to reach the equivalence point (Ve).  An arrow is used in the plot below to show where the linear 
regression line intersects the x-axis.  This value is the volume at the equivalence point (Ve).   
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Figure 2. Example of a first Gran function plot for alkalinity. 

For natural waters, the equivalence point usually occurs around a pH of 4.5, but this will depend greatly on the 
geology of the region.  It is worth saying that larger volumes of titrant can be added at pH values higher than 
5.5, but after this point, smaller volumes should be titrated so as not to miss the equivalence point.  Once the 
volume of titrant at the equivalence point has been determined, it and the sample volume and titrant 
concentration can be used to calculate alkalinity.  Alkalinity is a very important water quality parameter in 
several remedial/treatment processes.  Many treatment process require controlling/driving certain chemical 
reactions by manipulating pH and alkalinity.  For example, passive treatment systems for iron acid mine 
drainage contamination requires using limestone channels before and between oxidation and settling ponds in 
order to increase alkalinity, increase pH, and as a result oxidize ferrous and ferric iron into settleable iron oxide 
compounds. 

Hardness was originally associated with the capacity of water to precipitate soap.  The polyvalent metal ions 
associated with water hardness (chiefly Ca2+ and Mg2+) can cause the precipitation and buildup of carbonate or 
the formation of soap scum.  In current practice, the hardness of water is defined as the sum of the magnesium 
and calcium concentrations and is expressed as mg/L of CaCO3.  When the hardness is greater than the sum of 
the carbonate and bicarbonate alkalinity, that amount of hardness equivalent to the total alkalinity is called the 
carbonate hardness.  Hardness in excess of this is called non-carbonate hardness.  Water is considered soft when 
the measured hardness is less than 60 mg/L as CaCO3 and is considered very hard when great than 180 mg/L as 
CaCO3.  The hardness of the water can be impacted by many factors, soil and/or bedrock type being two of the 
more significant contributing factors.  Groundwater typically is hard whereas surface water bodies tend to be 
softer.  This is why most residences with private wells have water softener systems installed as the general 
consumer tends to prefer soft water as is reduced carbonate scaling, can prevent soap scum, and can produce a 
good lather with soap.  However, excessively soft water can be corrosive to pipes. 

The preferred method of hardness determination is through the separate quantification of calcium and 
magnesium concentrations where: 

Hardness (mg/L as CaCO3) = 2.497 (Ca in mg/L) + 4.118 (Mg in mg/L) 
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This method is more accurate in determining a hardness concentration, but requires two separate analytical 
techniques.  If the results do not warrant this level of accuracy, a single titrimetric technique can be applied that 
determines the calcium and magnesium hardness simultaneously.  The theory behind this technique is outlined 
briefly below. 

Ethylenediaminetetraacetic acid and its sodium salts (EDTA) are added to the solution were they form a 
complex compound that bonds to metal cations, essentially removing them from the solution as free ions.  The 
amount of EDTA that must be added to remove all of the Ca2+ and Mg2+ directly correlates to the concentration 
of these cations – regardless pf valence it is always a 1:1 reaction of EDTA:cations.  EDTA is titrated into the 
sample which contains an indicator die (either Eriochrome Blakc T or Calmagite).  The endpoint of the titration 
is identified where there is a color change in the solution, indicating that all of the Ca2+ and Mg2+ have been 
removed.   

The sharpness of the titration endpoint improves with increasing pH.  To prevent CaCO3 and/or Mg(OH)2 
precipitation, the pH for this method is set at a maximum of 10.0 with the stipulation that the titration be 
completed within 5 minutes.  In addition, Mg2+ ions must be present in solution to provide a sharp end point.  
To accomplish this and eliminate the need for Mg2+ correction, a small amount of EDTA-Mg complex is added 
to the buffer solution (although this step can prove problematic in very soft waters where this small volume of 
EDTA can induce an immediate color-change).  The EDTA hardness is determined using the following 
equation: 

Hardness (EDTA) as CaCO3/L = {A*B*1000}/{mL sample used} 

Where A = volume of titrant used in the titration and B = mg CaCO3 equivalent to 1.00 mL of titrant. 

The variable B depends on the concentration of the titrant:  the higher the concentration, the higher the value of 
B.  This value is determined by titrating a standard concentration (1.000 g/L) of reagent-grade CaCO3 with the 
titrant to be used in the laboratory.  This value is often provided on the EDTA solution bottle. 

Objectives 

• Learn how to perform a titration. 
• Quantify the alkalinity (ASTM D1067-02, APHA 2320B) and hardness (ASTMD1126-02, APHA 

2340) of a water sample and discuss results from different water sources. 
 
Materials for Measuring Alkalinity 
The following materials will be used to determine alkalinity of the water sample.   

• Mixing plate and magnet 
• Stand with burette clamp 
• Burette 
• pH probe 
• 500 mL beaker 
• Graduated cylinder 
• DI water 
• Bromphenol Blue Indicator solution 
• 3 mL dropper pipette  
• 0.1N Hydrochloric Acid (HCl) titrant 
• Safety gloves 
• Safety goggles 
• Lab coats 
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Procedure for Measuring Alkalinity 
The following procedure will be used to determine alkalinity of the water sample.  Record the pH and titrant 
volumes in the alkalinity data table found in Exhibit 3.  The final calculated alkalinity value can be recorded in 
the data table found in Exhibit 2.  The final alkalinity value will be shared with the group for discussion of 
variation in water quality between the different sources. 

 
1. Obtain a graduate cylinder and measure 200 mL of sample water. 

2. Transfer sample into a 500 mL beaker. 

3. Place a magnetic stirrer into the beaker, place on stir plate under burette found in the fume hood, turn 
on stirrer.  The setup should be positioned beneath the burette. 

4. Add 7+ drops of Bromphenol blue indicator solution (note that more may be required to add a 
noticeable blue color to the solution – check with the instructor). 

5. Rinse pH probe with deionized water from squirt bottle and place into sample, submerging the end, but 
not allowing it to touch the bottom/sides of the beaker. 

6. Record the initial volume of acid titrant and initial pH. 

7. Slowly add acid titrant in small volumes (0.5 mL), unless pH change is greater than 0.2 units, then 
adjust accordingly. With each addition of titrant, record the cumulative volume of titrant added and the 
new pH value. 

8. At a pH of about 5.5, decrease the volume of titrant, adding only 0.1 mL or as little as a few drops at a 
time. With each addition it titrant, record the new cumulative volume of titrant added and the pH. 

9. When color change remains constant (blue changes to yellow), record the titrant volume and pH – you 
have reached the equivalence point. 

10. Continue to add titrant in 0.1 mL increments, recording the volume and pH, until you’ve reached a pH 
of about 3.   

11. Calculate Ve (in L) based on the Bromphenol Blue Indicator dye color change: 

Ve = (titrant volume at color change) – (initial titrant volume) 

12. Calculate the alkalinity  (in mg/L CaCO3): 

Alkalinity = 5000*(Ve * Nt) / Vs 

Where Ve = volume of titrant at the equivalence point (L), Nt = normality of titrant in equivalents per 
liter (eq/L), Vs = sample volume (L), and 5000 converts from eq to mg. 

13. Should time permit the groups may collectively work with the instructor to calculate alkalinity using 
the graphical methods. 

 

Materials for Hardness 

The following materials will be used to determine hardness of the water sample.   

• Stand with burette clamp 
• Burette 
• Mixing plate 
• Magnet 
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• 250 mL beaker 
• Graduated cylinder 
• DI water 
• Eriochrome Black T Indicator solution 
• Buffer Solution 
• EDTA titrant 
• 3 mL dropper pipettes  
• Safety gloves 
• Safety goggles 
• Lab coats 

 

Procedure for Hardness 

The following procedure will be used to determine hardness of the water sample.  Record the titrant volumes in 
the hardness data table found in Exhibit 4.  The final calculated hardness value can be recorded in the data table 
found in Exhibit 2.  The final hardness value will be shared with the group for discussion of variation in water 
quality between the different sources. 

1. Use a graduated cylinder to measure the water samples.  Obtain 100 mL of sample water and place it in 
a 250 mL beaker. 

2. Place the beaker on the mixing plate below the burette found in the fume hood.   

3. Place a magnet bar in the beaker and turn on the mixing plate. 

4. Add 4 to 8 drops of indicator solution (either Eriochrome Black T) to the sample (note that more may 
be required to add noticeable color to the solution – check with the instructor). 

5. Add 2 mL of the buffer solution. Note – the titration must be completed within 5 minutes of buffer 
addition.  This is to minimize the tendency of the CaCO3 to precipitate from solution.  Should the 
addition of the buffer solution result in a color change – get a new sample volume, follow steps 1 
through 4, and skip step 5 (do not add buffer solution). 

6. Record the initial volume of EDTA by reading the volume on the burette. 

7. Add EDTA titrant slowly (a rate of 1-2 drops per second is ideal), until the last pink tinge disappears.  
Add the last few drops at 3 to 5 second intervals.  At the end point, the solution is normally blue.  The 
indicator dye changes from pink to blue over the span of one drop so care is required.  If the endpoint 
color change is missed the titration will have to be repeated.   

8. Records the final volume of EDTA titrant. 

9. Calculate the volume of EDTA titrant used. 

10. Calculate the hardness (in mg/L CaCO3). 

 

INORGANIC ANALYSIS 

Introduction and Background 

Metals (inorganic ions, such as iron, manganese, aluminum, arsenic, uranium, and lead) are found in varying 
concentrations in natural waters.  Typically these metals are released from bedrock via dissolution from contact 
with water.  Initially these metals will be present in their dissolved, ion state.  In groundwater the metals 
typically will remain in a dissolved state as groundwater typically has low oxygen concentrations and so 
oxidation reactions do not occur.  In surface water these metals tend to oxidize to some extent, due to high 
oxygen, microbial oxidation, and reactions with organic material.  Presence and concentrations of these 
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minerals can be quite variable depending on rock type, degree of exposure to water, and water quality.  In areas 
where there has been industrial mining for metal-bearing minerals (e.g. pyrite releases iron), surface water 
runoff over mine tailings piles can often result in concentrations higher than typical background levels due to 
natural exposure.  Some of these metals may also make their way into waterways from other industrial 
processes wastewater discharges.   

The presence of these metals may or may not be a water quality issue depending on the metal type and 
concentration.   When considering metal concentrations for drinking water purposes, metals like iron, 
manganese, and aluminum are regulated for aesthetic purposes, not health related concerns.  The secondary 
maximum contaminant levels (SMCL) for these metals is not enforced by the EPA, but in areas where these 
compounds are found at higher levels drinking water treatment plants will treat for these metals and will meet 
the SMCL.  Metals like arsenic, uranium, and lead do cause health problems, have enforceable maximum 
contaminant levels (MCLs), and must be treated for in drinking water treatment plants.  Metals analysis can be 
routine in water quality assessment, remediation/treatment design, and remedial/treatment quality control 
testing.  Therefore, it is important to have an understanding of how these materials should be properly sampled 
and analyzed.  

In this module participants will analyze water samples for iron.  As mentioned above, iron is a nuisance 
compound that leads to problems such as red water, staining of laundry and food, pipe fouling and interference 
of other technical equipment.  The drinking water standard for iron is 0.30 mg/L.  Iron can be present as ferrous 
iron (Fe2+), ferric iron (Fe3+), or any number of iron compounds (e.g. Fe(OH)3 or Iron(III) hydroxide).  Ferrous 
and ferric iron are dissolved ions, whereas the iron compounds are considered particulate material.  In order to 
determine the concentrations of ferrous iron, ferric iron, and general iron compounds the water samples must be 
collected and handled in a particular way.  These samples require filtration (0.45 µm filter paper) and 
acidification (pH < 2 with Nitric Acid) in the field.  Filtration separates the free ferrous and ferric ions from the 
particulate, solid compounds.  The acidification forces the iron reactions in such a direction that preferentially 
the iron remains in a dissolved state – thus not accumulating on the sides of the sample bottle which would 
lower the iron concentration levels.  Additionally, there should be no headspace left in the sample bottles as the 
presence of atmospheric oxygen could result in oxidation of the dissolved iron species.  Once the samples are in 
a lab and ready for analysis, the concentrations can then be measured in a number of ways, with a: color 
spectrophotometer, atomic adsorption, iron chromatograph, or gas-chromatography-mass-spectrometry.  Should 
the metal concentrations be over range for the color spectrophotometer, dilution may be required.       

Objectives: 

• Learn to filter and acidify samples for metals analysis. 
• Learn to use a color spectrophotometer to measure total and total dissolved iron concentrations (ASTM 

D1068-03, APHA 3500-Fe), calculate the concentration of particulate iron, and discuss results from 
different water sources. 

Materials: 

The following materials will be used to determine the iron concentration of a water sample.   

• 1 beaker 
• 1 filtration setup 
• Tweezers 
• Filter paper 
• HACH colorspectrophotometer 
• FerroVer Iron power packets 
• Scissors 



Short Course B-7 Rygel NYSGA 2014 

254 
 

• KimWipes 
• Distilled water 

 

Procedure: 

The following procedure will be used to determine the concentrations of total, particulate, and dissolved iron for 
a water sample.  Record the results in the data table found in Exhibit 2.  The results will be shared with the 
group for discussion of variation in water quality between the different sources. 

• To measure total iron: 

1. Turn on the HACH and enter program # 265 (US EPA Ferro Ver Method, Method 8008, 
Range = 0.02 – 3.00 mg/L). 

2. Obtain a numerically matching pair of 10 mL cuvettes.  Fill both of the 10 mL cuvettes with 
sample water.  The bottom of the meniscus should fall just about the 10 mL marker line. 

3. Place the two sample cells on the benchtop in front of the spectrophotometer.  The sample cell 
on the left will serve for the blank and the second sample cell on the right will serve as the 
sample. 

4. To the second sample cell on the right, add the contents of one FerroVer powder packet to the 
sample cell. Hold the powder packet at the top, give it a few flicks with a finger to get the 
powder to the bottom of the packet, use scissors to cut off the top along the black dashed line, 
pinch either side of the packet and push inwards to open the packet, and invert the packet over 
the sample cell to dump the contents.  Swirl to mix. Push the timer button to start the 
instrument timer for a reaction time of 3 minutes. 

5. Wipe the sides of sample cells with a KimWipe, removing any spots or smudges.   

6. Once the timer has sounded place the first, blank sample cuvette into the holding chamber of 
the HACH, close the lid, and hit Zero. 

7. Once a reading of 0.00 mg/L Fe is displayed, remove the blank sample cell from the HACH.  
Insert the second sample cuvette into the holding chamber, close the lid, and hit Read. 

8. Record your results, which are displayed in mg/L Fe, in the data table found in Exhibit 2.  

9. Dump the contents of the sample cell into a waste container, dump the contents of the blank 
into a sink, and place the cuvettes in a designated wash tray to cleaned later by the instructor.  
Please be careful when handling the cuvettes as they become very slippery when wet and can 
be easily dropped and broken. 

10. Note: If the sample’s concentration blinks at 3.0 mg/L the sample is over range and will need 
to diluted.  To prepare a x10 dilution, use a pipette to draw 1 mL of sample.  Extrude the 1 
mL of sample water into a washed and rinsed cuvette.  Using the pipette with a clean tip, add 
9 mL of distilled water.  Both the blank and sample should be prepared in this manner.  If you 
need a clean pair of cuvettes ask the instructor for assistance. Depending on the iron 
concentration of the sample – further dilution may be required.  To prepare a x100 dilution, 1 
mL of the x10 solution should be drawn and added to 9 mL of distilled water.  To prepare a 
x1000 dilution, 1 mL of x100 solution should be drawn and added to 9 mL of distilled water.   

• To measure total dissolved iron: 

1. To measure total dissolved iron, and then calculate the amount of particulate iron, the sample 
must be filtered.  Typically samples are filtered ahead of time in the field, but in some cases if 
they are immediately taken to the laboratory after collection they may be filtered in the lab.  
Filtering may be done with a syringe and screw-on filter or with a larger filter assembly that is 
hooked up to one of a variety of vacuum systems.  A filter setup has been pre-prepared for 
each group with a  0.45 µm filter paper  
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2. Turn on the vacuum pump. 
3. Pour approximately 200 mL of distilled water onto the middle of the filter.  Leave the vacuum 

on until the entire sample has been pulled through the filter paper. 
4. Turn the vacuum off.  Remove the bottom portion of the filter apparatus from the collection 

flask.  Transfer 10 mL of the filtrate to a clean cuvette – this will serve as the “blank”. 
5. Dump the remaining filtrate and reconnect the collection flask to the filter apparatus.  Turn on 

the vacuum pump. 
6. Pour approximately 200 mL of sample water into the middle of the filter.  Leave the vacuum 

on until the entire sample has been pulled through the filter paper. 
7. Turn off the vacuum pump.  Remove the bottom portion of the filter apparatus from the 

collection flask.  Transfer 10 mL of the filtrate to a second clean cuvette – this will serve as 
the “sample”. 

8. Follow the same procedure used to measure total iron to measure the amount of dissolved 
iron. 

9. Record the result in data table provided in Exhibit 2. 
 

• To calculate particulate iron: 

1. To calculate the amount of particulate iron, subtract the amount of dissolved iron from total 
iron. 

2. Record this result in the data table provided in Exhibit 2. 
 

 

BIOCHEMICAL OXYGEN DEMAND (BOD) ANALYSIS 

Introduction and Background: 

The biochemical oxygen demand (BOD) test is used to determine the amount of dissolved oxygen utilized for 
the degradation of organic matter in waters such as wastewater effluents and polluted waters.  It is one of the 
primary parameters used by wastewater treatment plants and various industries to determine if their treated 
waste stream is of acceptable quality to be pumped into a fresh surface water source like a river.  This form of 
BOD is termed the carbonaceous demand.   

BOD exertion (and utilization) is a complex process and can be affected by the following factors: 

• Microbial population: 
For degradation of the organic matter in the sample to occur, a microbial population must be present.  
A suitable population may already be present in the sample itself, as is the case with most wastewater 
samples.  However, other types of water being tested may not contain a sufficient level of 
microorganisms on their own, requiring that the sample be “seeded” with a microbial population.  In 
their natural environment, the seed microbial population becomes adapted to utilizing the nutrients that 
are available; however, when they are placed in a different environment with different biodegradable 
organics, it may take some time for the metabolic machinery to become adapted to the new food 
source.  As an alternative to using a natural seed, laboratory prepared seed is available that includes a 
wide variety of microbial types this ensuring that biological growth of some type can occur without an 
acclimation period. 

• Environmental conditions: 
Factors such as pH, temperature, and availability of nutrients can affect BOD.  It is important that 
analysis is started within 24 hours of collecting the water sample and that it is kept at 4ºC until then.  
The pH of the sample water should lie between 6.5 and 7.5 and can be adjusted to this range with 
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sulfuric acid or sodium hydroxide, depending on whether the water is alkaline or acidic.  Once the 
samples have been prepared, they should remain at approximately 20ºC for the duration of the test 
period. 

• Type of Organic Matter: 
Organic matter such as simple sugars and amino acids can be degraded faster than polysaccharides and 
complex proteins, potentially influencing the rate at which oxygen is consumed. 

• Inhibiting and toxic compounds 
 

The organic matter that is initially utilized is classified as readily or easily biodegradable organic matter.  The 
bacterial population is the first to utilize the organic matter, resulting in a rapid depletion of available oxygen 
and substrate.  This results in the rapid growth of the bacterial population.  As the oxygen becomes scarce, 
bacteria begin to die and are preyed upon by other bacteria and protozoans.  The protozoans become the 
dominant microbe and continue until the amount of organic matter becomes negligible or the oxygen drops 
below a threshold level and the aerobic bacteria die.  A new stage can then begin where anaerobic bacteria 
begin to grow (assuming that they are present at this stage in the BOD utilization cycle). 

The BOD measure, in a BOD5 determination, is a measure of the oxygen consumed in the first five (5) days of 
bacterial and protozoan growth.  If the dissolved oxygen does not get totally consumed, then most of the growth 
in the experiment has been bacterial.  Because the growth of biomass in the BOD experiment is highly variable, 
BOD determinations are often difficult to reproduce even between replicates of the same sample.  BOD 
measures should therefore be interpreted with caution. 

A different class of microbial cells called algae can also influence the results of the BOD test, especially if the 
sample is taken from a natural water stream such as a lake.  Algae act as a source of oxygen due to their 
photosynthetic metabolism which produces oxygen as a by-product.  To minimize the impact of algae, BOD 
bottles are stored in the dark during the five-day incubation period.  The results of any BOD test on waters 
where algal growth is significant or where light is allowed to shine on the BOD bottles should be considered 
faulty. 

The carbonaceous oxygen demand is the oxygen used by microorganisms in the breakdown of organic matter.  
However, oxygen may also be used to oxidize reduced forms of nitrogen.  This is termed the nitrogenous 
demand.  The oxidation of reduced forms of nitrogen requires the presence of microorganisms capable of 
carrying out this oxidation.  In many waters, including raw sewage and primary effluent, these microorganisms 
are not present in sufficient enough numbers to have much influence during a 5 day BOD test.  Usually, they 
will not exert a significant oxygen demand until day seven or eight (at 20ºC).  Under these circumstances, the 
BOD5 measured will be the carbonaceous BOD5 because the decrease in oxygen is attributable to bacteria using 
carbon compounds as a nutrient source.  As the BOD test reaches the seventh or eighth day, nitrifying bacteria 
begin to exert a measurable amount of oxygen demand (3.76 mg O2/mg NH3).  Measurements of BOD that 
include both carbonaceous and nitrogenous demand are not a true measure of the oxygen required to degrade 
organic matter and it is often desirable to inhibit the nitrogenous demand.  Inhibition of nitrogenous demand can 
be achieved by using a chemical inhibitor. 

BOD5 levels in waste streams can be quite variable depending on the source of the waste and other 
water/wastewater quality parameters (e.g. water at lower temperatures can hold more oxygen).  Animal manure 
may have a BOD level as high as 20,000 mg/L, sewer water is approximately 150-250 mg/L, and treated 
municipal sewer waste is approximately 20 mg/L.   
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Objectives 

• To quantify the five-day carbonaceous biochemical oxygen demand (BOD5) (ASTM D6238, APHA 
5210) of a water sample and discuss results from different water sources. 
 

Materials 

The following materials will be used to determine the BOD5 of a water sample.   

• Sterile BOD bottles 
• Water sample 
• Sterile deionized water 
• Labeling tape 
• DO probe 
• Squirt bottle of sterile deionized water 
• Kim Wipes 

 

Procedure 

The following procedure will be used to determine the BOD5 for a water sample.  Record the results in the data 
table found in Exhibit 5 and Exhibit 2.  The results will be shared with the group for discussion of variation in 
water quality between the different sources. 

First, each group will learn how to prepare BOD bottles for analysis.  Then, the groups will analyze BOD 
bottles prepared 5 days ago in order to determine the sample’s BOD5.  Note that we will not be diluting the 
samples or adding a seed or nitrogen inhibitor.   

• Preparing the sample bottles: 

1. Obtain 4 sterilized BOD bottles. 

2. Prepare and adhere labels.  All labels should include the Sample ID, date at t = 0, initials of 
the person(s) conducting the test, BOD day number (BODt, where t = 0 or 5), and indicate 
whether the bottle is the blank or sample.   There should be a blank bottle and sample bottle 
for day 0, and a blank bottle and sample bottle for day 5.  

3. Vigorously shake the jug of sample water in order to aerate the sample, saturating the water 
with dissolved oxygen. 

4. Immediately upon aerating the sample water, fill the BOD bottles to the top with sample 
water.  Place the stoppers in the bottles.  When the caps are put on the bottles, they should 
displace water.  If they do not displace water, add some more sample water.  This will ensure 
a tight seal and prevent air from being trapped in the bottles (which could potentially alter the 
dissolved oxygen readings). 

5. Start a timer for 15 minutes. 

6. Vigorously shake the jug of sterile, deionized water (with the same vigor and for the same 
period of time as the sample water). 

7. Immediately upon aerating the deionized water, fill the blank water bottles to the top with 
deionized water.  Place the stoppers in the bottles.  When the caps are put on the bottles, they 
should displace water.  If they do not displace water, add some more sample water.  This will 
ensure a tight seal and prevent air from being trapped in the bottles (which could potentially 
alter the dissolved oxygen readings). 
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8. Start a second timer for 15 minutes. 

9. Place all bottles for sample day 5 in the designated dark storage compartment. 

10. Put the samples aside that you just prepared; you will now work with the samples prepared for 
you five, 5, days prior to this short course.   

11. Turn on and re-calibrate the DO probe, following the instructions from the “Basic Water 
Quality Parameter” section above.  

12. After the 15 minutes has passed for the Day 0 blank and sample bottles, measure and record 
the DO concentration in the data table found in Exhibit 5. To measure DO in the BOD bottle, 
Remove the stopper from the BOD bottle, carefully insert the probe into the bottle until it is at 
a medial depth.  Holding the bottle very carefully as it is wet and very slippery, gently swirl 
the bottle so that water is flowing past the membrane at the end of the probe.   

13. The instructor will provide each group with the DO readings for the Day 0 sample and blank 
of each group’s source water.  Enter these values in BOD Analysis Data Table (Exhibit 5). 

14. Measure the amount of dissolved oxygen for the prepared blank and sample bottles for the 
group’s sample source, for Day 5.  Enter these values in BOD Analysis Data Table (Exhibit 
5). 

15. Determine the BOD5, show your work and final result in the BOD Analysis Data Table 
(Exhibit 5): 

BODt = {(D1-D2) – (B1-B2)}/P 

Where 1= initial (t=0) and 2 = final, D = sample, B = blank, and P = dilution factor (e.g. 
1mL/300mL).  Note: if the sample was not diluted – 300mL sample/300mL = 1. 
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Exhibit 1: Example Chain of Custody form 
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Exhibit 2: Summary Data Table for Water Quality Parameter Analytical Results 

Water Quality Testing Analytical Results Summary Table 

Sample ID:  

Source: 

Parameters Results Comments 

pH   

Temperature   

Conductivity    

Turbidity   

Alkalinity    

Hardness   

Total Iron   

Particulate Iron   

Dissolved Iron   

BOD5   
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Exhibit 3: Data Table for Alkalinity Analysis 

Alkalinity 

Sample ID: 

Source: 

Nt of titrant  

(Hydrochloric Acid, HCl, eq/L) 

 

Vs (volume of sample, L)  

Volume of Titrant 
(mL) 

pH Volume of Titrant 
(mL) 

pH 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    



Short Course B-7 Rygel NYSGA 2014 

263 
 

Exhibit 4: Data Table for Hardness Analysis 

Hardness 

Sample ID:  

Source: 

Initial Volume of EDTA (mL)  

Final Volume of EDTA (mL)  

Volume of EDTA used in the titration (mL) - A  

mg CaCO3 equivalent to 1.00 mL of titrant - B  

Volume of Sample Used (mL)  

Hardness (mg/L as CaCO3)  

 

Exhibit 5: Data Table for BOD Analysis 

Biochemical Oxygen Demand (BOD) 

Sample ID:  

Source: 

Day 0 Results for Bottles Prepared During the Short Course 

Sample Day Sample DO Concentration (mg/L) Blank DO Concentration (mg/L) 

0   

Pre-Prepared BOD Bottle Results 

Sample Day Sample DO Concentration (mg/L) Blank DO Concentration (mg/L) 

0 (provided)   

5   

Calculated BOD5 for Pre-Prepared Bottles 

BOD5 (mg/L)   

 




